
Physics , Condensed Matter
Homework 

Due Tuesday, th October 

Jacob Lewis Bourjaily

Problem 1: Electron in a Weak Sinusoidal Potential1

Consider an electron moving in a one-dimensional periodic potential U(r) = V cos (2πr/a). We are to
obtain the eigenenergies ǫn(q) and corresponding wavefunctions ψn,q(r) of the lowest two bands, treating
the potential perturbatively.

a) Away from the edge of the Brillouin zone, there are no degeneracies in the lowest energy band.
Using this fact, we are to compute ǫ1(q) to order V 2 and the corresponding wavefunctions to order V .

We begin by doing what amounts to Fourier transforming ψ(r) into momentum space,
making use of Bloch’s theorem to write

ψq(r) =
∑

G

cq−Ge
i(q−G)r, (1.a.1)

where G represents the reciprocal lattice, which is in this one-dimensional problem
generated simply by b ≡ 2π

a . Following Ashcroft and Mermin, we will study the
Schrödinger equation in momentum space:

[

~
2

2m
(q −G) − ǫ

]

cq−G +
∑

G′

UG′−Gcq−G = 0, (1.a.2)

where Uk are Fourier modes of the potential. In our case, this is extremely easy
to extract: every kindergartener should be able to take the Fourier transform of a
cosine; we find:

U+1 = U−1 =
V

2
and Ui6=±1 = 0. (1.a.3)

We are going to be interested in a wave function concentrated well within the first
Brillouin zone, in the limit where there are no nearly degenerate bands. Writing

ǫ0q = ~
2

2mq
2 and inserting our potential Uk into the Schrödinger equation, we see

(

ǫ− ǫ0q
)

cq =
V

2
(cq+b + cq−b) =⇒ cq =

V

2(ǫ− ǫ0q)
(cq+b + cq−b) . (1.a.4)

This expression does not reflect our interest in the first Brillouin zone: it is valid
for all q. Indeed, we see that we can iteratively unfold the equation to obtain an
expansion in terms of V

2(ǫ−ǫ0
q′

)
:

cq =
V

2(ǫ− ǫ0q)
(cq+b + cq−b) , (1.a.5)

=
V

2(ǫ− ǫ0q)

{

V

2(ǫ− ǫ0q+b)
(cq + cq+2b) +

V

2(ǫ− ǫ0q−b)
(cq + cq−2b)

}

, (1.a.6)

=
V 2cq

4(ǫ− ǫ0q)

{

1

(ǫ− ǫ0q+b)
+

1

(ǫ− ǫ0q−b)

}

+

[

V 3

8(ǫ− ǫ0q)(ǫ− ǫ0q+b)(ǫ− ǫ0q+2b)
(cq+b + cq+3b) + (b↔ −b)

]

;

(1.a.7)

&tc. Now, because we are expanding in V
2(ǫ−ǫ0q) , we may safely drop the O(V 3)

terms. Also, notice that in the curly brackets that we have the expressions ǫ− ǫ0q±b.
Now, because the bands are non-degenerate and we know the band energies are only
affected by terms leading in V 2, we can are allowed to take (ǫ− ǫ0q±b) 7→ (ǫ0q − ǫ0q±b)
to this order of approximation. With that in mind, we may divide both sides of the
expression above by cq/(ǫ− ǫ0q) obtaining

(ǫ− ǫ0q) =
V 2

4

{

1

(ǫ0q − ǫ0q+b)
+

1

(ǫ0q − ǫ0q−b)

}

+ O(V 3). (1.a.8)

1Note added in revision: the solution presented follows Ashcroft and Mermin—which is absolutely horrendous. The
entire first problem can be done in a couple of lines if you read the first few pages of Griffith’s Quantum Mechanics chapter
on (time independent) perturbation theory first! Honestly, believe me; learn non-degenerate perturbation theory first (and
see how to apply it in the degenerate case) and the problem will be MUCH easier.

1
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It is not altogether delightful, but this expression can of course be quite dramatically
simplified.

ǫ = ǫ0q +
V 22m

4~2b

{

2q + b− 2q + b

(4q2 − b2)

}

+ O(V 3),

= ǫ0q +
V 2m

~2

{

1

(4q2 − 4π2

a2 )

}

+ O(V 3),

∴ ǫ =
~

2

2m
q2 +

V 2m

4~2
(

q2 − π2

a2

) + O(V 3). (1.a.9)

‘óπǫρ ’ǫ́δǫι πoι�ησαι

Now we are asked to determine the corrected wave function to leading order in V . To
do this, we start by combining the right hand sides of equations (1.a.5) and (1.a.7):

V

2(ǫ− ǫ0q)
(cq+b + cq−b) =

V 2cq
4(ǫ− ǫ0q)

{

1

(ǫ0q − ǫ0q+b)
+

1

(ǫ0q − ǫ0q−b)

}

+ O(V 3),

=⇒ (cq+b + cq−b) = cq
V

2

{

1

(ǫ0q − ǫ0q+b)
+

1

(ǫ0q − ǫ0q−b)

}

+ O(V 2),

= cq
V m

2~2
(

q2 − π2

a2

) + O(V 2). (1.a.10)

Now, remember that equation (1.a.4) allows to write cq−b in terms of cq and cq−2b, for
example. Using this to rearrange equation (1.a.10), we see

cq+b = −cq−b + cq
V m

2~2
(

q2 − π2

a2

) + O(V 2),

= − V

2(ǫ0q − ǫ0q−b)
(cq + cq−2b) + cq

V m

2~2
(

q2 − π2

a2

) + O(V 2),

= cq

{

V m

2~2
(

q2 − π2

a2

) − V

2(ǫ0q − ǫ0q−b)

}

+ O(V 2),

= cq
V m

2~2
(

q2 − π2

a2

)

{

1 − 1

2π
(aq + π)

}

+ O(V 2);

∴ cq+b = cq
Vm

4~2
(

q2 − π2

a2

)

(

1 − aq

π

)

+ O(V 2). (1.a.11)

We don’t need to reproduce the above steps for cq−b: it comes for free once we have
cq+b:

cq−b = −cq+b + cq
V m

2~2
(

q2 − π2

a2

) + O(V 2),

= cq
V m

2~2
(

q2 − π2

a2

)

(

1 − 1

2

(

1 − qa

π

)

)

+ O(V 2);

∴ cq−b = cq
V m

4~2
(

q2 − π2

a2

)

(

1 +
qa

π

)

+ O(V 2). (1.a.12)

Inserting this in the expansion for ψq(r), we find directly,

ψq(r) = cqe
iqr + cq+be

iqreibr + cq−be
iqre−ibr + O(V 2),

= cqe
iqr

{

1 +
V m

4~2
(

q2 − π2

a2

)

[(

1 − aq

π

)

eirb +
(

1 +
qa

π

)

e−irb
]

}

+ O(V 2);

∴ ψq(r) = cqe
iqr

{

1 +
V m

2~2
(

q2 − π2

a2

)

(

cos

(

2πr

a

)

− iqa

π
sin

(

2πr

a

)

)

}

. (1.a.13)

‘óπǫρ ’ǫ́δǫι πoι�ησαι
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b) At the edge of the Brillouin zone there are degeneracies for small V . We are to work pertur-
batively near the zone edge to diagonalize the single electron Hamiltonian within the two-state Hilbert
space of the two nearly-degenerate lowest-energy free-electron momentum eigenstates of the same crystal
momentum. Then, we are to add the effects of the higher bands perturbatively. We are to obtain the
eigenenergies of the lowest two energy bands to order V 2 and the wave functions to order V as before.
We are to verify that for small V these results match our work for part (a) when one moves far enough
away from the edge of the Brillouin zone. We are to sketch the dispersions ǫn(q) and determine how
small V must be for this perturbation analysis to be reliable.

We are going to proceed along lines similar to those encountered in part (a). Specifically,
let us start by again by equating the right hand sides of equations (1.a.5) and (1.a.7)—
only this time, we will not use the assumption that all the eigenenergies are non-
degenerate.

(ǫ− ǫ0q) =
V 2

4

{

1

(ǫ− ǫ0q+b)
+

1

(ǫ− ǫ0q−b)

}

+ O(V 3). (1.b.14)

Now, we are going to consider perturbing the system near the Bragg plane at q = π
a ;

this will mean that we can consider the term ǫ− ǫ0q+b ≡ ζ where 1/ζ is at most linear
in V—we will justify this and give an explicit expression for ζ later.

Manipulating equation (1.b.14), we see that

(

ǫ− ǫ0q
)

(ǫ− ǫq−b) =
V 2

4

(

1 +
ǫ− ǫ0q−b

ζ

)

+ O(V 3),

=⇒ ǫ2 − ǫ

(

ǫ0q + ǫ0q−b +
V 2

4ζ

)

+ ǫ0qǫ
0
q−b −

V 2

4

(

1 −
ǫ0q−b

ζ

)

= 0.

This quadratic is easily solved by calling upon kindergarten identities:

ǫ =
1

2

(

ǫ0q + ǫ0q−b +
V 2

4ζ

)

± 1

2

{

(

ǫ0q + ǫ0q−b +
V 2

4ζ

)2

− 4ǫ0qǫ
0
q−b + V 2

(

1 −
ǫ0q−b

ζ

)}1/2

;

∴ ǫ =
1

2

(

ǫ0q + ǫ0q−b +
V 2

4ζ

)

± 1

2

{

(

ǫ0q − ǫ0q−b +
V 2

4ζ

)2

+ V 2

}1/2

. (1.b.15)

‘óπǫρ ’ǫ́δǫι πoι�ησαι

To evaluate the expression, one can simply insert the equation itself iteratively into
ζ = ǫ − ǫ0q+b—and observe that that it always gives a well-defined expression up to

terms of order O(V 3)2. This band structure is shown in Figure 1.
We should check that this result makes sense—and verify that it agrees with our previous

work once we are far enough away from the Bragg plane. First, notice that at the
Bragg plane, where q = b− q = π/a, we have

ǫ
(

q =
π

a

)

= ǫ0π/2 +
V 2

8ζ
± V

2

{

1 +
V 2

16ζ2

}1/2

,

=
~

2

2m

π2

a2
± V

2
+
V 2

8ζ
+ O(V 3).

Inserting this into definition of ζ as prescribed, we obtain

∴ ǫ
(

q =
π

a

)

=
~

2

2m

π2

a2
± V

2
− V 2ma2

32π2~2
+ O(V 3). (1.b.16)

2The reason for being implicit here is that the two cases we are interested—near and far from the Bragg plane—give
different results; but the implicit expression is always correct.



4 JACOB LEWIS BOURJAILY

0 0.5 1 1.5 2 2.5 3

Momentum q

0

10

20

30

40

y
gre

n
E

e
ula

v
ne

gi
E

Figure 1. The second-order band structure for a one-dimensional system in a weak
sinusoidal potential.

Similarly, we can check that equation (1.b.15) gives the right answer when we are far
enough away from the Bragg plane. When we are far from the Bragg plane, then
ǫ0q − ǫ0q−b ≫ V 2 so that we may expand

ǫ =
1

2

(

ǫ0q + ǫ0q−b +
V 2

4ζ

)

± 1

2

{

(

ǫ0q − ǫ0q−b +
V 2

4ζ

)2

+ V 2

}1/2

,

=
1

2









ǫ0q + ǫ0q−b +
V 2

4ζ
±
(

ǫ0q − ǫ0q−b

)











V 2

(

ǫ0q − ǫ0q−b

)2 +



1 +
V 2

4ζ
(

ǫ0q − ǫ0q−b

)





2










1/2








,

=
1

2









ǫ0q + ǫ0q−b +
V 2

4ζ
±
(

ǫ0q − ǫ0q−b

)











1 +
V 2

(

ǫ0q − ǫ0q−b

)2 +
V 2

2ζ
(

ǫ0q − ǫ0q−b

) + O(V 4)











1/2








,

=
1

2



ǫ0q + ǫ0q−b +
V 2

4ζ
±





(

ǫ0q − ǫ0q−b

)

+
V 2

2
(

ǫ0q − ǫ0q−b

) +
V 2

4ζ
+ O(V 4)







 .

Taking the solution corresponding to the lower band3,

ǫ1(q) = ǫ0q +
V 2

4

{

1

2ζ
+

1

ǫ0q − ǫ0q−b

+
1

2ζ

}

+ O(V 3),

= ǫ0q +
V 2

4

{

1

ǫ0q − ǫ0q+b

+
1

ǫ0q − ǫ0q−b

}

+ O(V 3),

and this we recognize as equation (1.a.8), which implies that this formula (1.b.15)
does indeed agree with our results from part (a).

‘óπǫρ ’ǫ́δǫι πoι�ησαι

Our last task is to determine the wave function for electrons at the Bragg plane to first
order in V . We will follow similar lines of thought to those travelled in part (a). Using
the same logic as there—only this time being careful not to ignore degeneracies—we
can begin our work with the equations

cq+b + cq−b = cq
V

2

{

1

(ǫ− ǫ0q+b)
+

1

(ǫ− ǫ0q−b)

}

+ O(V 2) and cq =
V

2(ǫ− ǫ0q)
(cq+b + cq−b) . (1.b.17)

3The solutions corresponding to the respective ‘±’ sign the equation (1.b.15) have now switched—this is simply because

when we extracted
�
ǫ0q − ǫ0

q−b

�
from the square root, the signs one again become arbitrarily assigned.
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This system yields exactly our result in part (a) for the case of cq+b:

cq+b = cq
V

2

{

1

(ǫ− ǫ0q+b)
+

1

(ǫ− ǫ0q−b)

}

− cb−q + O(V 2),

cq+b = cq
V

2

{

1

(ǫ− ǫ0q+b)
+

1

(ǫ− ǫ0q−b)
− 1

(ǫ− ǫ0q−b)

}

+ O(V 2),

cq+b = cq
V

2(ǫ− ǫ0q+b)
+ O(V 2),

cq+b = cq
V

2(ǫ0q − ǫ0q+b)
+ O(V 2),

= −cq
V 2ma

4π~2(q + π
a )

+ O(V 2);

∴ cq+b = cq
V 2

4~2
(

q2 − π2

a2

)

(

1 − qa

π

)

+ O(V 2). (1.b.18)

The story changes, however, for cq−b. It is not hard to jump a bit in the calculation and
see

cq−b = cq
V

2(ǫ− ǫ0q−b)
+ O(V 2). (1.b.19)

Now, from our calculation of the eigenenergies at the Bragg plane we know that

ǫπ/a − ǫ0π/a−b = ±V
2
− V 2ma

16π~2
(

q + π
a

) + O(V 3), (1.b.20)

so we see

cq−b = cq
V

2

(

±V
2 − V 2ma

16π~2(q+ π
a )

) + O(V 2),

= cq
1

±
(

1 ∓ V 2ma

8π~2(q+ π
a )

) + O(V 2),

∴ cq−b = ±cq
(

1 +
V m

8~2
(

q2 − π2

a2

)

(qa

π
− 1
)

)

+ O(V 2). (1.b.21)

Putting all this together, we see

ψ±
q= π

a
(r) = cqe

iqr

{

1 ± e−ibr +
V m

4~2
(

q2 − π2

a2

)

(

1 − aq

π

)

(

eibr ∓ e−ibr

2

)

}

,

so that

ψ+(r) ∝ cqe
iqr

{

2e−i br
2 cos

(πr

a

)

+ i
V m

2~2
(

q2 − π2

a2

)

(

1 − aq

π

)

[

sin

(

2πr

a

)

− i
e−ibr

4

]

}

; (1.b.22)

and

ψ−(r) ∝ cqe
iqr

{

2ie−i br
2 sin

(πr

a

)

+
V m

2~2
(

q2 − π2

a2

)

(

1 − aq

π

)

[

cos

(

2πr

a

)

− e−ibr

4

]

}

. (1.b.23)

‘óπǫρ ’ǫ́δǫι πoι�ησαι
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Figure 2. The first Brillouin zone dispersion for a tight-binding model on a two-
dimensional square lattice.

Problem 2: Tight-Binding Model on a Square Lattice
Consider a tight-binding model on a square, two-dimensional square lattice (lattice spacing a) with

on-site energy ǫ0 and nearest-neighbour hopping matrix element t:

H =
∑

r

{

ǫ0|r〉〈r| + t
[

|r〉〈r + ax̂| + |r〉〈r − ax̂| + |r〉〈r + aŷ| + |r〉〈r − aŷ|
]}

.

a) We are to obtain the dispersion relation for this model.

Just for the sake of clearing up notation, our Bravais lattice here will be generated by
~a1 = a(1, 0) and ~a2 = a(0, 1) which has the associated reciprocal lattice generated by
~b1 = 2π

a (1, 0) and ~b2 = 2π
a (0, 1). We will write all momenta in terms of the reciprocal

lattice, so ~q = q1~b1 + q2~b2. Using Bloch’s theorem it is quite easy to see that the
Hamiltonian of this system is given by

Hψ =
{

ǫ0 + t
(

ei~q·~a1 + e−i~q·~a1 + ei~q·~a2 + e−i~q·~a2

)}

ψ, (2.a.1)

=
{

ǫ0 + t
(

ei2πq1 + e−i2πq1 + ei2πq2 + e−i2πq2

)}

ψ, (2.a.2)

=
{

ǫ0 + 2t (cos (2πq1) + cos (2πq2))
}

ψ; (2.a.3)

∴ ǫ(~q) = ǫ0 + 2t {cos(2πq1) + cos(2πq2)} . (2.a.4)

This dispersion relation is shown in the first Brillouin zone in Figure 2.

b-d) Let us sketch the Fermi surface in the first Brillouin zone when the band is less than and more
than half-full, assuming a particle-like band (t < 0). And we are to make an accurate drawing of the
Fermi surface for the case of a precisely half-filled band.

When the Fermi surface is very near the bottom of the band energy, then it is ap-
proximately a circle: for qi ≪ 1, we can expand the cos(2πqi)’s to see that ǫ(q) ∼
ǫ0 + 2t− 2πt~q 2 + O(~q 3), the solution to which is precisely a circle.

As the energy increases, the Fermi surface flattens out along the diagonal directions,
becoming a square when the band is half-filled. When the band is more than half-
filled, the square breaks into four disjoint components which encircle the corners of
the Brillouin zone. Expanding cos (2πqi) about qi ∼ 1

2 shows that when the band is
nearly filled, the Fermi surface components do in fact become circles.

These are shown in detail in Figure 3.
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Figure 3. Several Fermi surfaces observerd for a tight-binding square lattice model.
Dark colouring indicates lower energy—Fermi surfaces are included for the band both
more than and less than half filled. The half-filled Fermi surface is the clearly visible
square in the plot.
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Figure 4. Fermi surfaces in the tight-binding square-lattice model with t′ > 0 next-to-
nearest-neighbour couplings for various values of t′/|t|. From left to right: t′/|t| = 1/10,
t′/|t| = 1/2, and t′/|t| = 7/10. Notice the sharp transition at t′/|t| = 1/2.

e-f) We are to add a matrix element t′ for hopping between next-to-nearest-neighbour sites and
sketch how the Fermi surface of the half-filled band changes for t′ > 0 and t′ < 0.

It is simple enough to write down the new dispersion relation coming from the the
Hamiltonian similar to part (a) above. Following that analysis, we find

Hψ =
{

ǫ0 + 2t
(

cos (2πq1) + cos (2πq2)
)

+ t′
(

ei~q·(~a1+~a2) + ei~q·(~a1−~a2) + ei~q·(~a2−~a1) + e−i~q·(~a1+~a2)
)}

ψ,

=
{

ǫ0 + 2t
(

cos (2πq1) + cos (2πq2)
)

+ t′
(

ei2π(q1+q2) + e−i2π(q1+q2) + ei2π(q1−q2) + e−i2π(q1−q2)
)}

ψ,

=
{

ǫ0 + 2t
(

cos (2πq1) + cos (2πq2)
)

+ 2t′
(

cos (2π(q1 + q2)) + cos (2π(q1 − q2))
)}

ψ;

∴ ǫ(~q) = ǫ0 + 2t
(

cos (2πq1) + cos (2πq2)
)

+ 2t′
(

cos (2π(q1 + q2)) + cos (2π(q1 − q2))
)

. (2.f.5)

This modification can have a rather drastic effect on the Fermi surface—especially if t′/|t|
can be as large as around ± 1

2 . Using equation (2.f.5) we have little difficulty plotting
Fermi surfaces for various values of t′/t. In Figure 4 we show three qualitatively
different Fermi surfaces for t′ > 0 for different values of t′/|t| and in Figure 5 we
show these for t′ < 0.
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Figure 5. Fermi surfaces in the tight-binding square-lattice model with t′ < 0 next-
to-nearest-neighbour couplings for various values of t′/|t|. From left to right: t′/|t| =
−1/10, t′/|t| = −1/2, and t′/|t| = −9/10. Notice the sharp transition at t′/|t| = −1/2.

Problem 3: Band Structure of Graphene and Nanotubes
Recall the honeycomb lattice used to describe graphene in homework 2. We are to consider a tight-

binding model with a single level per site on a two-dimensional honeycomb lattice with only nearest-
neighbour hopping with on-site energy ǫ0 and nearest neighbour hopping matrix element t.

a-b) We are to find the energy bands of this model and determine at what momenta the two bands
are degenerate.

Just to get our bearings, let us recall the Bravais and reciprocal lattices of the honeycomb
lattice:

~R = 〈~a1,~a2〉 with ~a1 = a
√

3 (1, 0) and ~a2 = a
√

3

(

1

2
,

√
3

2

)

, (3.a.1)

~Q = 〈~b1,~b2〉 with ~b1 =
4π

3a

(√
3

2
,−1

2

)

and ~b2 =
4π

3a
(0, 1) . (3.a.2)

In this model, the wave function on each Bravais cell contains two linearly independent
parts, coming from the two atoms in each cell; let’s call them atoms A and B. The
Hamiltonian of the system can be described by a 2 × 2 matrix, the diagonal parts
coming from the on-site energy ǫ0 and the off-diagonal parts describing the hopping
matrix elements. The two off-diagonal entries are Hermitian conjugates of each other:
one describe hopping from A → B and the other describes hopping from B → A.
Because the two processes are conjugate, it is sufficient to describe one.

Let ~q = q1~b1 +q2~b2—where q1 and q2 are not required to be integers. Although it will be
very quickly brushed away, let us say that the vector ~vAB connects the atom at site
A to that at site B. The hopping, or off-diagonal, part of the Hamiltonian is given
by4

HA→B = tei~q·~vAB

{

1 + ei~q·~a2 + ei~q·(~a2−~a1)
}

, (3.a.3)

∝ t
{

1 + ei2πq2 + ei2π(q2−q1)
}

, (3.a.4)

= t
{

1 + 2eiπ(2q2−q1) cos (πq1)
}

. (3.a.5)

Let us briefly observe that if HAB were represented as reiθ , then the solution to the
eigenvalue equation is

∣

∣

∣

∣

ǫ0 − ǫ reiθ

re−iθ ǫ0 − ǫ

∣

∣

∣

∣

= 0 =⇒ ǫ = ǫ0 ± r. (3.a.6)

Using this and the work above, we can directly write down the dispersion relation:

ǫ(~q) = ǫ0 ± t
√

1 + 4 cos (π (2q2 − q1)) cos (πq1) + 4 cos2 (πq1). (3.a.7)

‘óπǫρ ’ǫ́δǫι πoι�ησαι

4The proportionality is used to ignore a phase factor, which will not affect our analysis of energy eigenvalues.
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Figure 6. Energy bands calculated for graphene: the bands are shown separately on
the right and left, and shown together in the middle. Notice there are precisely six
degeneracies located in the firs Brillouin zone.

We see that degeneracy implies that the above discriminant vanishes. This will be the
case if

eiπ(2q2−q1) cos (πq1) = −1

2
. (3.a.8)

At first glance, there are two possibilities we may try: first, we know that eiπ(2q2−q1) ∈
R, so it must be ±1. If eiπ(2q2−q1) = 1 then 2q2−q1 = 2n for n ∈ Z; the equation above
requires cos(πq1) = − 1

2 , which means that q1 = 2
3 or 4

3 . This gives us an infinite class
of degenerate solutions, and by adding and subtracting reciprocal lattice vectors, we
find six, essentially equivalent degeneracies at the corners of the first Brillouin zone:

(

1

3
,−1

3

) (

−1

3
,
1

3

) (

1

3
,
2

3

) (

2

3
,
1

3

) (

−2

3
,−1

3

) (

−1

3
,−2

3

)

, (3.a.9)

where the components refer to the values of q1, q2 in ~q = q1~b1 + q2~b2. Now, be-
cause adding and subtracting lattice vectors brought us into the other condition for
degeneracy—with 2q2−q1 an odd integer—we know that all of the degeneracies have
been accounted for.

The energy bands are plotted in Figure 6, where the six degenerate points are clearly
visible.

c-d) Describe and sketch the topology for various Fermi surfaces that can occur as the filling of
bands is varied. We should also describe the Fermi surface when the lower band is completely filled.

For very low ǫF , the fermi surface is a circle inscribed within the bowl seen in Figure 6.
As the energy increases, the Fermi surface appears more and more hexagonal until
finally it breaks into six arcs—one about each of the corners of the first Brillouin
zone. These six regions shrink as ǫF → ǫ0, when they vanish. This is shown in
Figure 7.

As ǫF grows above ǫ0, the Fermi surface lies on the upper band and progresses in reverse
of the lower-band: for low energies above ǫ0, the Fermi surface is composed of six
distinct circular components which grow until they become nearly hexagonal; at
high energies, the Fermi surface again approaches a single circular section. This
progression is also shown in Figure 7.

In the case when the lower band is completely full, the Fermi ‘surface’ is the union of
the six distinct Dirac points (of course, only two of them are inequivalent).
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Figure 7. Contours indicating the Fermi surfaces for various ǫF in the lower (left) and
upper (right) bands for the graphene tight-binding model. In both plots the energy is
lower in the darker region—regions in white on the left plot match to the regions in
black on the right plot.

e) If we were to compactify a sheet of graphene in one direction, the result would be a carbon
nanotube. Depending on which Bravais lattice vector is taken as the compactifying direction, there may
or may not be a band gap—if there is a gap, then the nanotube is an insulator; if the two bands are
degenerate, then the tube is metallic. We are to determine which types of carbon nanotubes will be
metallic and which would be insulating.

The ‘compactification’ of graphene into a carbon nanotube can be described as taking

a quotient of the Bravais lattice by one of the lattice vectors, written ~R/~r where
~r = r1~a1 + r2~a2 where in this case r1, r2 ∈ Z. That is to say, travelling in the
direction ~r brings you around the nanotube and back to where you started: the

atoms at sites related by ~R+~r are not merely related to those at ~R, but are actually
the same atoms. This means that there is no ‘phase factor’ for travelling any multiple
of times along ~r.

Precisely, this requires that
ei~q·~r = 1 ∀ ~q. (3.e.10)

This places a strong constraint on the allowed ~q’s—indeed, it breaks our continuous
band of allowed values to a discrete set. Whether or not the nanotube will be a metal
or an insulator is completely determined by whether or not this discrete subset of
allowed momenta include the Dirac points explored above.

The condition ei~q·~r = ei2π(q1r1+q2r2) = 1 is that

q1r1 + q2r2 ∈ Z. (3.e.11)

Recall that the six Dirac points were located at ~q with components (with respect to
~b1,~b2 basis) given in equation (3.a.9). There are two ‘types’ of points to check: the
first two Dirac points listed in equation (3.a.9) will be present in the nanotube iff

r1
3

− r2
3

∈ Z =⇒ (r1 − r2) ∈ 3Z; (3.e.12)

the second type of point will be present in the nanotube iff

r1
3

+
2r2
3

∈ Z =⇒ (r1 + 2r2) ∈ 3Z. (3.e.13)

It is not hard to show that these two conditions are in fact equivalent5. Therefore, a
carbon nanotube will be a metal in this model only if

r1 − r2 = 3ℓ for some ℓ ∈ Z. (3.e.14)

‘óπǫρ ’ǫ́δǫι δǫ�ιξαι

5Say r1 − r2 = 3ℓ, then r1 + 2r2 = 3ℓ + r2 + 2r2 = 3(ℓ + r2) ∈ 3Z; and conversely, say r1 + 2r2 = 3m, then
r1 − r2 = 3m − 2r2 − r2 = 3(m − r2) ∈ 3Z. QED
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Problem 4: Thermodynamics Near a Dirac Point
Let us return our attention to the tight-binding model of graphene from problem 3. We may for the

sake of convenience take ǫ0 = 0.
a) The points where two bands become degenerate are called ‘Dirac points.’ We are to determine the

low-temperature behaviour of the specific heat and magnetic spin susceptibility near the Dirac point for
graphene.

The first step in our analysis will be to expand the dispersion relation (3.a.7) found
in problem 3 above near the Dirac points. Now, because the six Dirac points are
obviously translationally related, it is sufficient to consider just one for the moment.
Let us expand equation (3.a.7) about the Dirac point (1/3,−1/3)6:

ǫ = ±t
{

1 + 4 cos

(

π +
3πδq√

2

)

cos

(

π

3
+
πδq

3
√

2

)

+ 4 cos2
(

π

3
+
πδq

3
√

2

)}1/2

,

= ±t







1 + 4

(

−1 +
9π2δq2

4
+ . . .

)

(

1

2
− 1

2

√

3

2
πδq − π2δq2

8
+ . . .

)

+ 4

(

1

2
− 1

2

√

3

2
πδq − π2δq2

8
+ . . .

)2






1/2

,

= ±t







1 + 2

(

−1 +
9π2δq2

4
+ . . .

)

(

1 −
√

3

2
πδq − π2δq2

4
+ . . .

)

+

(

1 −
√

3

2
πδq − π2δq2

4
+ . . .

)2






1/2

,

= ±t
{

1 + 2

(

−1 +
9π2δq2

4
+ . . .

)

(

1 −
√

3

2
πδq − π2δq2

4
+ . . .

)

+ 1 − 2

√

3

2
πδq − π2δq2

2
+

3π2δq2

2
+ . . .

}1/2

,

= ±t
{

1 + 2

(

−1 +

√

3

2
πδq +

π2δq2

4
+

9π2δq2

4
+ . . .

)

+ 1 − 2

√

3

2
πδq − π2δq2

2
+

3π2δq2

2
+ . . .

}1/2

,

= ±t
{

6π2δq2 + . . .
}1/2

;

∴ ǫ ≃ ±tπ
√

6δq. (4.a.1)

This allows us to compute the density of states about a single Dirac point is given
by

g(ǫ) = 2

∫

dǫ

d2q

(2π)2
δ(2)(0 ≤ π

√
6δq ≤ dǫ),

=
δq dǫ

tπ2
√

6
;

∴ gone Dirac point(ǫ) =
ǫ

6t2π3
=⇒ gtot(ǫ) =

ǫ

t2π3
. (4.a.2)

With the density of states, we may compute the total energy7,

u = u0 +

∫ ∞

0

dǫ g(ǫ)f(ǫ)ǫ,

= u0 +
1

t2π3

∫ ∞

0

ǫ2dǫ

eǫ/(kBT ) + 1
,

= u0 +
3ζ(3)

2t2π3
k3

BT
3 + O(T 4),

where ζ(n) is the Riemann zeta function. Therefore, we see that

cv =
9ζ(3)k3

B

2t2π3
T 2 + O(T 3). (4.a.3)

6We will expand in δq
√

2
so that | ~δq| = δq.

7Using Mathematica for the integrals.
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To find the magnetic susceptibility we will begin by referring to the textbook or class
notes wherein it is found that the total magnetization (in the Pauli model) is given
by

M = µ2H

∫

dǫ g′(ǫ)f(ǫ). (4.a.4)

Evaluating this integral directly, we see

χ =
∂M

∂H
= µ2 kBT log(2)

t2π3
+ O(T 2). (4.a.5)

b) Consider doping graphene so that ǫF is just above the Dirac point, but by an amount much less
that of T ; we are to again describe the low-temperature approximations of the specific heat and magnetic
spin susceptibility.

I am pretty sure that the picture we are supposed to envision is that we are some ǫF
separated from the Dirac point, yet close enough to it that g(ǫ) can be still viewed
as a linear function of ǫ. If this is the appropriate, then we can take

g(ǫ) =
ǫ− ǫF
t2π3

and f(ǫ) =
1

e(ǫ−ǫf)/(kBT ) + 1
,

and integrate above the Fermi surface8. Using a computer algebra package, we find

u = u0 +
1

t2π3

∫ ∞

ǫF

ǫ(ǫ− ǫF ) dǫ

e(ǫ−ǫF )/(kBT ) + 1
,

=
ǫFk

2
B

12t2π
T 2 +

3ζ(3)k3
B

2t2π3
T 3 + O(T 4).

(It is comforting that this reproduces our earlier result for vanishing ǫF .) This allows
us to directly conclude that

∴ cv =
ǫFk

2
B

6t2π
T +

9ζ(3)k3
B

2t2π3
T 2 + O(T 3). (4.b.1)

Now, to find the magnetic susceptibility, we perform the same steps as before and see

M = µ2H

∫

dǫ g(ǫ)f(ǫ) = µ2H
1

t2π3

(

kBT log(2) +
ǫF
2

)

, (4.b.2)

and so

∴ χ = µ2 1

t2π3

(

kBT log(2) +
eF

2

)

. (4.b.3)

8There are alternative ways of looking at this.


